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ABSTRACT

The explosive popularity of smartphones and mobile devices drives
massive growth in the wide-area mobile data communication. Un-
fortunately, the current or near-future 3G/4G networks are deemed
insufficient to meet the increasing data transfer demand. While op-
portunistic offloading of mobile data through Wi-Fi is an attractive
option, the existing transport layer would experience frequent dis-
connections due to mobility, making it hard to support seamlessly
reliable data delivery. As a result, many mobile applications either
depend on ad-hoc downloading resumption mechanisms or redun-
dantly re-transfer the same content when disruptions happen.

In this paper, we present DTP, a disruption-tolerant, reliable trans-
port layer protocol that masks the failures of the preferred network.
Unlike previous disruption/delay-tolerant protocols, DTP provides
the same semantics as TCP on an IP packet level when the mobile
device is connected to a network while providing the illusion of
continued connection even if the underlying physical network be-
comes unavailable. This would help the mobile application devel-
opers to focus on the application core rather than addressing the fre-
quent network disruptions. It would also greatly reduce the phone
network costs both to ISPs and end users. Our current implemen-
tation in UDP shows a comparable performance to that of TCP in
network, and it greatly reduces the delay and power consumption
when the mobile devices frequently switch from one network to
another.

Categories and Subject Descriptors

C.2.1 [Network Architecture and Design]: Store and forward net-
works; C.2.1 [Network Architecture and Design]: Wireless com-
munication; C.2.2 [Network Protocols]: Applications
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1. INTRODUCTION

Recent advancement in cell-phone networks and smartphones
has brought massive growth in the mobile data communication.
The number of mobile network users is expected to surpass that
of the wired Internet within the next four years [1] and the global
traffic volume is predicted to consume 6.3 Exabytes per month in
2015, a 26-fold increase from that of 2010 [2]. However, the exist-
ing 3G or Long Term Evolution (LTE) networks in the near future
are unlikely to provide as much bandwidth as in the wired Internet,
and the capacity shortage is becoming a serious barrier to advanc-
ing the mobile data communication.

There have been a number of works that address the capacity
overloading problem. One end of the efforts is to increase the phys-
ical capacity by reducing the cell size or by intelligent multiplexing
of the shared radio medium [3,4]. However, these approaches have
fundamental limitations when the aggregate network demands ex-
ceed the physical capacity. The other end of the line focuses on
adopting the hybrid usage of 3G and much higher-bandwidth net-
works such as the wired Internet through Wi-Fi. The idea is to of-
fload the 3G mobile data transfer via Wi-Fi opportunistically while
using the 3G networks as a backup medium to meet the transfer
deadline [5-8]. This opportunistic Wi-Fi offloading is an attractive
option especially in urban areas with high Wi-Fi availability, with
the potential of reducing the 3G data bandwidth consumption via
delay-tolerant networking (DTN) [9]. We believe that many non-
interactive data-intensive applications such as podcast [10,11], TV
episode or movie downloading [12], or personal storage synchro-
nization [13] could benefit from it.

In this paper, we promote delay-tolerant, opportunistic Wi-Fi of-
floading of 3G mobile data from a practical point of view. Our goal
is to support Wi-Fi offloading with little or no change to the cur-
rent applications or underlying networks. We observe that the 3G
or Wi-Fi networks show stable behavior most time while the mo-
bile devices are connected, but one needs to handle network disrup-
tions preferably in a transparent manner when the mobile devices
switch from one network to another. According to recent measure-
ments, 87% of the entire smartphone usage occurs while the users
are on the move, implying frequent switches between multiple net-
works [14].

One approach is to have the applications handle network dis-
ruptions by themselves. In fact, some applications already sup-
port download resumption when they change their network attach-
ments. However, this necessitates an ad-hoc implementation of
download resumption in each application (e.g., HTTP byte-range
queries, CGI parameter passing, and so on), which cannot be easily
reused by other applications. For dynamically-generated contents,
applications may not be able to determine where to resume down-



loading or end up with re-downloading the whole content on a new
connection if the IP address of the device changes. Another ap-
proach, which we favor in this work, is to transparently handle the
network disruptions in the transport layer. Since the majority of
mobile applications use TCP, if we make TCP disruption-tolerant,
many non-interactive applications could benefit from transparent
Wi-Fi offloading with minimal change. This would also ease the
burden on the application developers so that they focus on the core
program logic rather than handling network failures or disruptions
due to device mobility.

We present the design and implementation of DTP, a disruption-
tolerant transport layer protocol that transparently masks network
failures from the application layer. On a high level, DTP works
similarly to TCP when the mobile device is attached to a network
but it provides the illusion of continued connection to the applica-
tions even when the underlying network is unavailable. This way,
DTP allows the mobile applications to exploit Wi-Fi offloading
without requiring them being DTN-aware. Unlike previous DTN
protocols [15-18], DTP supports reliable data delivery on a packet
level and it does not require any special support from the network
infrastructure.

The key technical challenge in DTP is how we manage the con-
nection when the physical network switches between on and off.
Instead of binding the connection on the four connection tuples
(source and destination IP addresses and port numbers), DTP binds
the connection to a flow ID that is agreed at the initial connec-
tion setup time and does not change during the connection life-
time. When a mobile host moves to another network, it can resume
the connection with a new IP address and a port number by cryp-
tographically attesting that it owns the flow ID of the connection.
The DTP connection closes either when both parties explicitly tear
it down or when the keep-alive duration of the connection expires.
The keep-alive duration is the estimated connection lifetime set at
the connection setup time that can be updated during the course of
the connection.

While DTP hides the network disruptions transparently from the
application layer, it presents a few security problems. Malicious
hosts may attempt to hijack a connection by resuming an inter-
rupted one or create lots of fake states on the server side. To prevent
connection hijacking, DTP exchanges a secret key at connection
setup and authenticates the other end by a simple challenge-and-
response protocol before resuming. To mitigate the state explosion
attacks, DTP keeps a minimal state per flow (less than 200 bytes
per flow), reducing the memory burden on the server.

We build the prototype of DTP as a UDP-based API library
where each function has a one-to-one correspondence to a TCP
socket function. Our initial evaluation shows that its performance
is comparable to that of TCP on wired or Wi-Fi networks while it
shows 47% and 123% better performance for moderate and large
file sizes in a typical delay-tolerant setting.

2. BACKGROUND

Many smartphones and tablet PCs these days have both 3G and
and Wi-Fi interfaces. The availability of 3G is typically more ubiq-
uitous than that of Wi-Fi [5], but it is more expensive due to smaller
capacity. While the next generation cell-phone networks such as
LTE are being deployed, they are unlikely to catch up with the fast-
growing mobile data demand in the future.

To mitigate the 3G capacity overloading problem, many data-
intensive mobile applications configure Wi-Fi as the preferred in-
terface by default, and explicitly ask for the permission from the
user when it needs to switch to 3G. Recent studies show that one
can benefit further from Wi-Fi offloading if we allow some delay

Category 3G Wi-Fi
Availability 100% 45%(Vehicle) / 53%(Walk)
Latency 130 ms 80 ms
Bandwidth | 1-2 Mbps 2.6 - 5 Mbps

Table 1: Wi-Fi Availability Test in Visiting a Large City

for data transfer [5, 6]. We can offload 10% to 30% of 3G data to
Wi-Fi if we disallow any interruptions in data transfer, but the of-
floading ratio can go up to 75% if we allow 30 minutes of delay
and to 88% for 6 hours of delay [6]. While delays in real-time con-
tents would lead to poor user experience, we find that many non-
interactive applications (e.g., large-file downloading) could benefit
from delayed Wi-Fi offloading and reduce monthly 3G data bills.
Moreover, some delays could present opportunities for intelligent
load balancing in the network itself by shifting the bandwidth usage
to a less congested timeframe.

Our work bridges the previous studies with practical offloading
support from the transport layer. To facilitate the delayed transfer
with as little burden on the application developers as possible, we
propose using a TCP-like transport layer that is resilient to network
disruptions or failures. In this section, we first check the feasibility
of Wi-Fi offloading and the current Wi-Fi offloading practice with
popular mobile applications.

2.1 Opportunities for Wi-Fi Offloading

We gauge the viability of Wi-Fi data offloading by measuring
the availability, connection time, inter-arrival time, bandwidth and
latency in a large city in South Korea. First, we have three peo-
ple measure the 3G/Wi-Fi availability by visiting popular places in
Seoul for 4 days. Second, we draw the similar statistics from pre-
vious Wi-Fi/3G usage traces of 97 iPhone users for 18 days [6].
Our measurements are by no means representative, but we believe
that they show some sense of feasibility of Wi-Fi-based 3G data
offloading in an urban setting.

2.1.1 Wi-Fi Availability in Visiting a Large City

To see how widely Wi-Fi is available in a casual visit to a large
city, we measure the Wi-Fi availability, bandwidth and latency in a
few popular places in Seoul. We pick four popular places (Gang-
nam, Myongdong, Insa-dong (all outdoors), and Co-Ex (indoors) in
Seoul) where many people visit, and move between them by public
transportation. During the 4-day visit, we gathered the data for 27
hours (including 6.7 hours on the subway, and 4.4 hours on a bus).
We find that Wi-Fi is available for Internet access for about 45%
of the time either on the subway or on a bus (73% on the subway,
5% on a bus), and for 53% of the time while walking around the
popular places. Most of these Wi-Fi hotspots are provided by a few
ISPs in South Korea. For example, one of the ISPs claims that it
has over 87K hotspots nationwide [19].

We also measure the bandwidth and latency from these locations
to a server in our lab (about 200 km away from the locations) by
implementing a simple Android application. Whenever an Android
client meets and connects to a new Wi-Fi AP, it calculates the la-
tency between the client and the server by recording the minimum
time it takes to receive a response by a ping request. Next, we mea-
sure the bandwidth by transmitting a large file to the server and
calculating the total transfer time. Table 1 shows that the Wi-Fi
bandwidths are between 2.6 to 5 Mbps on average while those of
3G are from 1 to 2 Mbps. than The average latency of Wi-Fi and
3G are about 80 ms and 130 ms. The Wi-Fi latency looks a bit high
presumably because it is used by many people in the areas. Overall,
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Figure 1: CDF for Wi-Fi Connection and Inter-Arrival Times

our results show that Wi-Fi has larger available bandwidths even in
busy places in a large city.

2.1.2  Wi-Fi Availability in Daily Lives

We analyze the Wi-Fi availability in daily lives in a large city.
We use the traces of 97 iPhone users who periodically measure the
Wi-Fi availability in their daily lives in Seoul for 18 days [6]. We
measure the connection and inter-arrival time of Wi-Fi by check-
ing the network status of the client every three minutes. Figure 1
shows the distributions of Wi-Fi connections and inter-arrival times
in CDF. The graph shows that about the half of the connection times
are less than 6.6 minutes while 10% of them show more than 5.7
hours. The long connection times are mostly for staying at home or
at work while small ones indicate transient Wi-Fi availability on the
move. Also, about the half of the inter-arrival times are less than
7.8 minutes and 10% of them are over 1.1 hour. This result implies
that while there are many short Wi-Fi connections, the inter-arrival
times are also small, expecting to meet a new Wi-Fi spot soon.

We find that there are good opportunities for Wi-Fi offloading
but in order to maximize the benefit, we need to exploit frequent
network disruptions and re-connections to our advantage. In our
measurements, we observe that without proper upload or down-
load resumption, the users cannot send or receive a file larger than
120 MB for the half of the Wi-Fi connections and would simply
waste the Wi-Fi bandwidth and battery power.

2.2 Mobile Applications in Disruptions

To examine how current mobile applications respond to network
disruptions, we analyze the behavior of seven popular Android ap-
plications that are downloaded more than 100,000 times from An-
droid market [20] as shown in Table 2. Dropbox [13] provides on-
line storage synchronization, MapDroyd [21] is used to download
and store world-wide maps for offline access. Beyondpod [22],
Google Listen [23], and Winamp [24] are audio players that can be
linked with podcasting services. TubeMate [12] is a video down-
loader for YouTube.

When mobile devices experience network disconnections during
data transmission, Dropbox, MapDroyd, and Winamp stop with a
network failure message, and the downloads do not resume even
when the network becomes available again. We find that Android
Market, Beyondpod, and Google Listen support download resump-
tion by HTTP byte-range queries while TubeMate uses CGI pa-
rameter passing. Even though these applications support download

Application Category Resumption method
Dropbox Online storage Not Supported
MapDroyd Offline map access | Not Supported
Winamp Podcast manager Not Supported
Android Market | App. downloading | HTTP Range Request
Beyondpod Podcast manager HTTP Range Request
Google Listen Podcast manager HTTP Range Request
TubeMate YouTube video CGI Parameter Passing

Table 2: Download Resumption in Popular Mobile Applica-
tions

resumption at network disruptions, there is no common library or
rules that can be reused for other applications. Also, it is unclear
how one supports the streaming contents where the data is gener-
ated on the fly.

Even when applications do not implement download resumption,
TCP will resume the connection if a disruption clears up within the
time for the maximum number of retransmissions of the same seg-
ment assuming the IP address does not change. The total time for
retransmission before disconnection is recommended to be larger
than 100 seconds [25]. We find that the number of maximum re-
transmissions is 15 on Linux (kernel version 2.6.40), which corre-
sponds to about 17 minutes. This implies that TCP on Linux can-
not handle network disruptions longer than 17 minutes even if the
IP address does not change. We design DTP to overcome frequent
disruptions and IP address change in mobile environments.

3. DESIGN

This section describes the design of DTP, a disruption-tolerant,
reliable transport layer protocol. An example is shown in Figure 2.
‘We present the basic protocol, security features, and failure recov-
ery mechanisms at network disruptions.

3.1 Disruption-tolerant Connection

TCP binds the IP addresses and port numbers (or the four tuples)
of the two communicating ends on its connection. If any one of
them changes, the connection needs to be re-established to resume
the data transfer. This implies that the IP address of a TCP con-
nection is used to identify the host location of the network as well
as the host itself. This duality of the IP address, however, creates
a problem in mobile environments where the host location changes
frequently due to host mobility.

In order to maintain a connection despite network disruptions or
IP address change, DTP binds a connection to a special identifier
called “flow ID”. The flow ID is determined at initial connection
setup time, and it uniquely identifies the connection on both hosts.
The DTP connection persists until either it is explicitly torn down
by both ends or the keep-alive duration expires. The keep-alive
duration is an estimated connection lifetime set by the application,
during which the connection stays on even without the physical
network availability. We discuss the details in section 3.2.

If the IP address of a mobile host changes, DTP sends a packet
with a new IP address to the other end to initiate the authentication
process that proves the ownership of the flow ID. If the other end
identifies the connection for the flow ID, both parties can resume
data transfer from where it left off. Disruption-tolerant connections
bring several advantages. First, it allows the application developers
not to worry about frequent network disruptions in the Wi-Fi of-
floading scenarios. They can assume that the connection is always
on until it is done with data transfer. Second, it enables the same
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connection to switch between Wi-Fi and 3G without notice from
the application. It allows seamless offloading of even interactive or
real-time data without re-establishing the connection or download
resumption by the application. One downside of DTP, however, is
in the burden to maintain the connection state even when the host
is unavailable. Our prototype DTP implementation requires only
176-byte state information per connection, so even for one million
concurrent connections, the system would need less than 200 MB
for the states.

3.2 DTP Protocol Header

The DTP protocol header is shown in Figure 3. We borrow most
required fields from the TCP header. The CHG, RSP, and AUTH
bit flags are used for secret key validation and will be explained in
section 3.3.2. In the option fields, we define the flow ID as the last
four bytes of the SHA-1 hash of the host ID and the timestamp at
the connection creation time (at a microsecond granularity). The
host ID is the SHA-1 hash of the host device ID. The host device
ID can be any string that uniquely identifies a host during the con-
nection such as International Mobile Equipment Identity (IMEI) of
a cell phone or the MAC address of the first interface of a laptop
or a PC. The flow ID and the host ID are sent to the remote host
at connection initiation, and in the rare case that the same flow ID
exists at the remote host for a different connection, the remote host
rejects the connection requiring the sender to retry with a new flow
ID until there is no conflict.

The keep-alive duration is sent to the remote host as another op-
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(a) Normal DTP connection (b) Keep-alive duration timeout

Figure 4: DTP Communication Timeline

tion field. It is an estimated connection lifetime in seconds set by
the application (e.g., dtp_setsockopt() with the KEEP_ALIVE op-
tion) before initiating the connection, and can be updated during
the connection according to the application’s needs. The value is
negotiated by the server to limit the number of inactive connec-
tions with a very large keep-alive duration. When a host receives
a packet with the keep-alive duration option, it either accepts the
value by echoing it to the sender or suggests another value in the
response packet until both parties agree on the same value. When
the keep-alive duration is not used, DTP falls back to the normal
TCP behavior and disconnects the connection after 15 retransmis-
sions of the same packet.

3.3 DTP Communication

We describe the persistent data communication with DTP in three
stages: connection establishment, data transmission, and teardown
as shown in Figure 4(a).

3.3.1 Connection Establishment

To initiate a DTP connection, the sender sends a SYN packet
with a flow ID, its host ID, and an optional keep-alive duration
value. If the keep-alive duration is missing, the value is initialized
to 0. Each host maintains a connection hash table that maps the
flow ID to its remote host ID and the four tuples of the connection.
If the same flow ID exists for a different connection, the receiving
end responds with a RST packet to elicit a different flow ID from
the sender. Otherwise, it sends a SYN+ACK with its own host ID
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along with the agreed flow ID and an optional keep-alive duration.
To prevent connection hijacking, both parties also agree on a shared
secret key, which is explained in section 3.3.4.

3.3.2 Data Transmission

After connection establishment, the hosts transfer the data sim-
ilar to TCP. That is, slow start, sequence numbers and ACK’ing,
flow and congestion control work like TCP. At network disruptions,
DTP hides the failures from the application and stops data trans-
fer until the network becomes available again. The other end host
keeps sending packets until the maximum retransmission thresh-
old is reached. It then either closes the connection or further holds
the state without sending any packets, depending on the pre-defined
keep-alive duration value. The network availability information can
be mostly obtained from the underlying system (e.g., via the Broad-
castReceiver package on Android or a netlink socket on Linux) or
one can resort to periodic probing with an exponential backoff.

When the network becomes available again, DTP re-synchronizes
its connection. The disrupted host sends either a normal data or an
ACK packet possibly with a different IP and a port number pair, and
the connection resumes after flow ID verification. When a host re-
ceives a data/ACK packet whose flow ID does not match the stored
IP address and the port number, it responds with an out-of-band
challenge packet with the CHG flag on. The challenge packet in-
cludes a randomly-generated nonce (8 bytes) in its payload. On
receiving it, the other host replies with a response packet that has
HMAC-SHA 1,y (nonce) in its payload with the RSP flag on. After
successful verification of the hash, the host sends an authentication
packet (with the AUTH flag on), and the connection resumes (Fig-
ure 5(b)). If the verification fails, the host sends an RST packet to
alert the other host to close and start a new flow.

We note that there are a few cases where the connection resump-
tion may fail. When either host reboots for some reason (e.g., bat-
tery outage), it loses all previous connection information. If pack-
ets never arrive within the keep-alive duration, the host closes the
connection on its end and notifies the application of an error (Fig-
ure 4(b)). When a host receives a packet whose flow ID does not
exist in its connection table, it responds with a RST packet that
has its host ID in the option field. With the host ID, the other end
host checks whether the RST packet was sent by the communicat-
ing host or by another host that happens to be assigned with the
same IP address of the original host after the original host left the
network. If a host receives a RST with an unexpected host ID, the
connection goes into the wait mode until a resumption packet from
the original host arrives or the keep-alive duration expires. When
both hosts change their IP addresses during a network disruption,
they will end up with closing the connection after the keep-alive
duration. However, this case would be uncommon in practice since
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Figure 6: Implementation of DTP

most connections are between a mobile client and a server whose
IP address rarely changes.

3.3.3 Connection Teardown

The connection can be torn down in two ways. The two hosts
can explicitly close the connection by exchanging FINs and ACKs
like in TCP. If the keep-alive duration expires, the host closes the
connection on its end unilaterally. If the application closes the con-
nection during the network disruption, DTP closes the connection
on its end but sends a FIN to the other end when the network be-
comes available again within the keep-alive duration.

3.3.4 Shared Secret Key Exchange

To prevent connection hijacking attacks by a random host, DTP
exchanges the secret key at connection setup as shown in Figure 5(a).
We use the RSA algorithm here but any asymmetric key crypto-
graphic algorithms can be used instead. The SYN packet includes
the public key of the host, (n, e), in its payload, and the other end
generates a secret key, encrypts it by the public key, and sends
it in the payload of the SYN+ACK packet. This shared key is
used to verify the ownership of the flow ID when a connection re-
sumes after IP address change. Since the client side usually initiates
the connection, the RSA decryption burden is shifted to the client
side in our scheme, alleviating the load at the server. We believe
that the additional work done during the secret key exchange or
the challenge-and-response does not impose much overhead on the
server since a modern CPU core can do more than 3,000 RSA de-
cryptions per second [26] and heavy cryptographic operations can
be easily offloaded to GPUs [27].

4. IMPLEMENTATION

In this section, we describe our implementation of the DTP pro-
totype and its API library, which is designed to be compatible to
that of TCP for easy migration.

4.1 Architecture

We implement the DTP prototype as a user-level UDP library.
We choose the user-level approach for portability and ease of pro-
gramming, but the more efficient kernel-level implementation would
not be too hard. The DTP library spawns a “transport core” thread
per application that manages the connection information and pro-
cesses received packets, and the application thread provides the
TCP socket-like functions to the application as shown in Figure 6.
Our current prototype is compatible to TCP in terms of functional-
ity: it implements slow start, flow and congestion control, fast re-



int dtp_socket(void);
int dtp_bind(int sockfd, const struct sockaddr *addr,
socklen_t addrlen);
int dtp_connect(int sockfd, const struct sockaddr *addr,
socklen_t addrlen);
int dtp_listen(int sockfd, int backlog);
int dtp_accept(int sockfd, struct sockaddr *addr,
socklen_t *addrlen);
ssize_t dtp_read(int fd, void *buf, size_t count);
ssize_t dtp_write(int fd, const void *buf, size_t count);
int dtp_close(int fd);
int dtp_select(int nfds, fd_set *readfds, fd_set *writefds,
fd_set *exceptfds, struct timeval *timeout);
int dtp_fentl(int fd, int cmd, ... /* arg */);
int dtp_getsockopt(int sockfd, int level, int optname,
void *optval, socklen_t *optlen);
int dtp_setsockopt(int sockfd, int level, int optname,
const void *optval, socklen_t optlen);
uint32_t dtp_getflowid(int sockfd);

Figure 7: DTP API Functions

transmit and recovery, timeout and retransmission, delayed ACKs,
and so on.

4.2 DTP API Library

One of our implementation goals is to provide easy transition
from TCP-based applications. Figure 7 shows the current set of
DTP functions that are designed to map to a subset of TCP socket
functions. dtp_socket() creates a connection context internally and
returns a file descriptor to the application. Using this file descriptor,
the application can connect, bind and listen on a port, accept a con-
nection, read and write application data to the other end. A UDP
socket is created internally for each connection socket (a socket
through which the connection is initiated) and the server listening
on a port can accept the connection by creating a UDP socket with
a new port number. The mapping between UDP and DTP sockets
is managed by the transport core thread. Our current implementa-
tion supports event-driven programming with dtp_select(), and we
are working on implementing fork(). The number of lines of the
current version is 5,283 lines in C.

Our experience with porting existing TCP servers and clients
shows that it is straightforward to use the DTP library while it takes
small effort to port them. We had one undergraduate student port
wget [28] to use DTP instead of TCP socket functions. By grepping
socket functions and replacing them with the DTP counterparts, he
could successfully port it to a DTP version in a couple of hours.
It required only 19 lines of code change out of 43,372 lines of the
original code. We also port a simple web server to a DTP version
with the similar effort. We are currently working on porting the
Apache Web server to use DTP, but it requires several function and
flag options to be implemented, which is not related to actual net-
work communication.

S. EVALUATION

In this section, we compare the performance of DTP with various
protocols in terms of throughput and battery consumption. In our
test settings, we use a laptop with a Intel Core i7-2620M processor
and 4 GB of physical memory (on linux 2.6.40) and a Nexus-S
phone (on Android 2.6.35.7) as clients, and a desktop machine with
a Intel Core 17-2600 CPU with 8 GB RAM (on linux 2.6.38-12) as

a SCrver.
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Figure 8: Large-file Download Tests

5.1 Microbenchmark

We first measure the base transfer throughputs between a laptop
and a desktop server on a 1 Gbps LAN and on a WLAN with an
802.11n Wi-Fi AP. We compare DTP against TCP and UDT, a high-
speed reliable data transport protocol based on UDP [29]. In this
test, we have the laptop upload a 1 GB file to the server to saturate
the LAN connection and a 100MB file for the Wi-Fi connection. As
shown in Figure 8, DTP shows a comparable performance to that
of TCP both on wired (945.9 Mbps vs. 942.8 Mbps) and wireless
LANSs (43.82 Mbps vs. 44.07 Mbps). The performance of UDT is
also similar to that of TCP and DTP.

5.2 Performance at Network Disruptions

We now compare the DTP performance with that of TCP and
the Bundle Protocol (BP), one of the representative DTN proto-
cols [18] while the client changes its IP address when it moves to
another Wi-Fi network. The clients are connected to a Wi-Fi AP
whose bandwidth we limit to 3 Mbps to simulate our measured
results. We use the median connection/disruption time values ob-
tained in Section 2.1 (6.6 minutes and 7.8 minutes). If the content
downloading does not complete before the disruption, we increase
the next connection time by its median value. We base the file sizes
by calculating the average size of the YouTube’s top-viewed HD
videos for the past one year (each downloaded more than 20 mil-
lion times) [30], and analyze the impact of network disruptions for
the file sizes of 154 MB (average file size), 77 MB (half the aver-
age), and 308 MB(double the average).

Figure 9(a) shows the throughputs between the laptop and the
server. To allow fast probing of the network availability, we set the
maximum backoff time of the probing packet to one second for both
DTP and BP. No protocols experience a disruption for download-
ing the 77 MB file, and the performance is similar among all three
protocols. But DTP shows 47.9% and 128.9% better performance
than TCP in 154 MB and 308 MB files each. This is because TCP
needs to retransmit the entire file after each network disruption,
while DTP finishes downloading the files at most in one network
disruption. DTP shows 3.3% to 5.2% better performance than BP
because BP has extra header overhead of each bundle. While DTP
shows only small performance improvement from BP, its resource
consumption is much smaller than that of BP since the reference BP
implementation holds the entire data in memory to prepare a bun-
dle and creates a new primary block whenever there is a network
disruption. Figure 9(b) shows the performance between the phone
and the server. Similar to the previous test, DTP shows 46.9% to
122.6% better performance compared with TCP. We do not mea-
sure the BP’s performance here because the reference implementa-
tion does not run on Android due to a lack of support for libraries
such as oasys [31]. Another BP implementation, ByteWalla [32]
runs on Android, but we find that it does not implement the “Frag-
ment” option (Bundles are split up into multiple constituent bundles
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at network disruptions.) [33], and cannot resume data transfer after
network disruptions.

5.3 Power Consumption

Figure 9(c) shows the power consumption of Nexus S as we run
the tests with the 308 MB file from the previous section. We also
measure the power consumption of transferring the same file via
TCP using the 3G network without disruptions (TCP-3G). TCP-3G
shows a rapid decrease in battery power since it consumes more en-
ergy during data transfer than Wi-Fi as in [34]. Also, its throughput
is the worst (0.78 Mbps) and finishes the last even without network
disruptions. We find that DTP-Wi-Fi consumes 58.3% and 77.3%
less power compared with that of TCP-Wi-Fi and TCP-3G while it
finishes downloading 1,655 and 2,021 seconds earlier.

6. RELATED WORKS

There have been several approaches to support mobility for IP
networks. Mobile IP [35] exports a fixed home address through
which external hosts communicate regardless of the actual network
attachment of the mobile host. When the mobile host leaves its
home network, the home agent relays the IP packets arriving at
the home address to the care-of-address (e.g., real address) of the
mobile host. In contrast, DTP does not require a home agent, nor it
needs to relay packets, which would produce better packet routing
between the two ends.

DTP is similar to Migrate TCP option [36] in that both enable
connection reuse for IP address change. But DTP is more friendly
to 3G/Wi-Fi offloading environments since it allows the applica-
tions to set the disruption delay much larger than the maximum
segment lifetime (MSL) DTP bears the similarity with i3 [37] and
HIP [38] in that they support mobility by separating the host iden-
tity and its network location. Unlike DTP, both require additional
infrastructure support such as a DHT network and the DNS.

DTP supports the concept of delay-tolerant networking [9] into
Wi-Fi data offloading. Previous DTN protocols such as Bundle
Protocol (BP) [18] and Licklider Transmission Protocol (LTP) [15—
17] assume more challenged networks with high delays and packet
losses whereas DTP is geared towards mostly stable networks but
with frequent disruptions. Exploiting the fact, DTP supports reli-
able transfer on an IP packet level without an additional layer that
wraps the content into bundle blocks as in BP. Besides, the cur-
rent BP works only for the content whose size is already known
prior to transmission, whereas DTP allows users to watch a stream-
ing video without interruption even when she moves from a Wi-Fi
network to 3G or vice versa. LTP is designed to reliably trans-
fer the data mostly in dedicated networks with very high RTTs

(e.g., deep space) and does not consider typical TCP issues such
as flow and congestion control in shared networks. For this reason,
the current LTP implementation uses pre-defined parameters (e.g.,
window size) before the communication initiates [39]. In contrast,
DTP strives to conform to TCP to be fair to other competing flows,
allowing the co-existence of heterogeneous networking devices.

7. DISCUSSION

In this section, we discuss some of the issues that were not ad-
dressed in this paper and consider an extended offloading frame-
work for our future work.

State Explosion Attacks: In malicious environments, an at-
tacker can instruct zombie hosts to create many DTP connections
with a long keep-alive duration on a target server. While we design
DTP to have a very small memory footprint per connection and al-
low the server to limit the keep-alive duration value to specifically
guard against this attack, the application sometimes has to maintain
a large buffer per request. One such scenario is that the client sends
a large-file request and goes offline immediately afterwards. How-
ever, we note that this sort of attack is not unique to DTP but can
be launched on any TCP-based servers. One defense approach is
for the server to detect suspicious requests by careful resource ac-
counting [40] and dynamically reset the keep-alive durations when
it is suspected to be under attack. We plan to explore this issue
further in the future.

ISP-driven Offloading Servers: Using DTP, mobile ISPs may
further exploit Wi-Fi offloading for efficient network resource uti-
lization. One example is that mobile ISPs provide a DTP cloud
storage server that runs an application protocol multiplexer. In this
scenario, the multiplexer translates DTP connections from mobile
hosts to TCP connections to the target server and vice versa. For in-
stance, a client can send emails to the cloud server using DTP-based
SMTP, and the cloud server relays them to the destination using
TCP. Or the cloud server can receive and store a podcast video from
a TCP-based postcast server and pushes it onto the mobile phone
using DTP. This would not only provide an incremental deployment
path of DTP, but also allow the mobile ISPs to spread bandwidth
consumption across the time axis similar to SmartGrid [41]. We
are currently working on a cloud storage server for mobile ISPs.

8. CONCLUSION

While many works have shown the effectiveness of Wi-Fi mobile
data offloading, there has not been a practical data delivery mech-
anism to support it. We propose DTP, a disruption-tolerant reliable
transport layer protocol, which allows seamless switching between



3G and Wi-Fi networks on the same connection for mobile applica-
tions. We design it to easily migrate existing applications to trans-
parently recover from network disruptions, with little performance
degradation from that of TCP. Our evaluation shows that DTP is
promising with the great potential to reduce 3G network usage as
well as the battery consumption.
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