
Reliable, Consistent, and Efficient Data Sync for Mobile Apps

Younghwan Go†∗, Nitin Agrawal∗, Akshat Aranya∗, Cristian Ungureanu∗

NEC Labs America∗ KAIST†

Abstract

Mobile apps need to manage data, often across devices,

to provide users with a variety of features such as seam-

less access, collaboration, and offline editing. To do so

reliably, an app must anticipate and handle a host of

local and network failures while preserving data con-

sistency. For mobile environments, frugal usage of cel-

lular bandwidth and device battery are also essential.

The above requirements place an enormous burden on

the app developer. We built Simba, a data-sync service

that provides mobile app developers with a high-level

local-programming abstraction unifying tabular and ob-

ject data – a need common to mobile apps – and trans-

parently handles data storage and sync in a reliable, con-

sistent, and efficient manner. In this paper we present a

detailed description of Simba’s client software which acts

as the gateway to the data sync infrastructure. Our eval-

uation shows Simba’s effectiveness in rapid development

of robust mobile apps that are consistent under all failure

scenarios, unlike apps developed with Dropbox. Simba-

apps are also demonstrably frugal with cellular resources.

1 Introduction
Personal smart devices have become ubiquitous and users

can now enjoy a wide variety of applications, or apps

for short, running on them. Many such apps are data-

centric [2] often relying on cloud-based resources to store,

share, and analyze the data. In addition to the user inter-

face and the various features, the developer of such an app

needs to build the underlying data management infrastruc-

ture. For example, in order to deliver a high-quality note-

taking app such as Evernote, the developers have to build

a data management platform that supports rich multime-

dia notes, queries on data and metadata, collaboration, and

offline operations, while ensuring reliability and consis-

tency in the face of failures. Moreover, a mobile app de-

veloper needs to meet the above requirements while also

being efficient with the limited resources on mobile de-

vices such as cellular bandwidth and battery power. The

better the developer handles the above-mentioned issues

the more likely the app will attract and retain users.

With the rapid growth in the number and the variety

of apps in the marketplace, there is a consequent demand

∗Work done as part of an internship at NEC Labs

from practitioners for high-level abstractions that hide the

complexity and simplify the various tasks of the app de-

veloper in managing data [6, 34, 52].

Data-sync services have emerged as an aid to develop-

ers wherein an app can offload some of its data manage-

ment to a third-party service such as Dropbox, iCloud,

or Google Drive. While at first such services catered to

end-users who want access to their files across multiple

devices, more recently such services provide SDKs for

apps to use directly through CRUD (Create, Read, Up-

date, Delete) operations [15]. Sync services are built upon

decades of research on distributed and mobile data sync –

from foundational work on disconnected operations [30],

weakly-connected replicated storage [37, 55], and ver-

sion management [42], to more recent work on wide-area

database replication [58], collaborative editing [46], and

caching for mobile devices [57].

The principles and mechanisms of data sync by them-

selves are well understood, here we do not seek to rein-

vent them, but a data-sync service needs to achieve a dual

objective in order to be valuable to mobile apps. First,

it must transparently handle matters of reliability, consis-

tency, and efficiency, with little involvement from the app

developer, which is challenging. As the makers of Drop-

box also note, providing simplicity to users on the out-

side can require enormous complexity and effort under-

the-hood [24]. Second, a data-sync service must pro-

vide a data model that is beneficial to the majority of

apps; while file sync is commonplace, many apps actually

operate over inter-dependent structured and unstructured

data [11]. A high-level data model encompassing tables

and files is of great value to app developers and the trans-

parency must apply to this data model.

A data-sync service must preserve, on behalf of the

apps, the consistency between structured and unstructured

data as it is stored and shared under the presence of fail-

ures. Consider the example of photo-sharing apps such as

Picasa and Instagram; typically such an app would store

album information in a table and the actual images on the

file system or object store. In this case, the sync service

needs to ensure that there will never be dangling point-

ers from albums to images. Since mobile apps can crash

or stall frequently for a variety of reasons [10, 50], if an

app is in the middle of a data operation (a local write or

sync) when a failure occurs, the sync service needs to reli-

1

ably detect and recover to a consistent state. Recent work

has shown that several data-sync services also spread cor-

rupt data when used with desktop file systems [61, 62].

While services already exist for file [4, 27, 56] and ta-

ble [15, 29, 43] data, none meet the above criteria.

To better understand how mobile apps and sync ser-

vices maintain data consistency under failures, we con-

ducted a study of popular mobile apps for Android in-

cluding ones that use Dropbox, Parse, and Kinvey for data

sync. Our study revealed that apps manage data poorly

with data loss, corruption, and inconsistent behavior.

We thus built Simba to manage data for mobile apps,

which provides a high-level abstraction unifying files and

tables. The tables may contain columns of both primitive-

type (string, integer, etc.) and arbitrary-sized objects, all

accessible through a CRUD-like interface. For ease of

adoption, the interface is kept similar to the ones already

familiar to iOS and Android developers. Apps can con-

struct a data model spanning both tables and objects and

Simba ensures that all data is reliably, consistently, and ef-

ficiently synced with the server and other mobile devices.

Simba consists of an SDK for developing mobile apps,

the Simba client app (sClient) for the mobile device, and

the Simba cloud server (sCloud); all apps written with the

Simba SDK, Simba-apps, communicate only with the lo-

cal instance of sClient which serves as the proxy for all in-

teraction with sCloud. In this paper, we focus on the trans-

parency of the high-level abstraction as it affects Simba-

apps and hence primarily discuss sClient; the entire Simba

service is presented in greater detail elsewhere [45].

Through case studies we show how Simba enabled

us to quickly develop several mobile apps, significantly

increasing development ease and functionality. Simba-

apps benefited greatly from sClient’s failure transparency;

an app written using Dropbox failed to preserve atomic-

ity of an entire data object leading to torn updates and

synced inconsistent data under failure. Benefiting from

Simba’s ability to programmatically incorporate delay-

tolerant data transfer, Simba-apps also exhibited reduced

network footprint and gave the device increased opportu-

nity to turn off the cellular radio.

2 Study of Mobile App Reliability
We studied the reliability of some popular mobile apps

and sync services (on Android) by systematically intro-

ducing failures – network disruption, local app crash, and

device power loss – and observing the recovery outcome,

if any. The apps in our study use both tables and files/ob-

jects, and rely on various existing services, i.e., Dropbox,

Parse, and Kinvey, for data sync. We setup two Android

devices with identical apps and initial state. To simulate

a network disruption we activated airplane mode and for

crashes (1) manually kill the app, and (2) pull the battery

out; the outcomes for the two crash tests do not differ and

we thus list them once, as shown in Table 1.

For the network disruption tests, some apps (e.g., Hiyu,

Tumblr) resulted in loss of data if the sync failure was not

handled immediately after reconnection. If the app (or

the notification) was closed, no recovery happened upon

restart. Some apps (UPM, TomDroid, Keepass2) did not

even notify the user that sync had failed. As most apps re-

quired the user to manually resync after failure, this over-

sight led to data perpetually pending sync. Some apps

exhibited other forms of inconsistency. For TomDroid,

if the second device contacted its server for sync even in

absence of changes, the delete operation blocked indefi-

nitely. For Evernote, manual re-sync after disruption cre-

ated multiple copies of the same note over and over.

For the crash tests, the table-only apps recovered cor-

rectly since they depended entirely on SQLite for crash

consistency. However, apps with objects showed prob-

lematic behavior including corruption and inconsistency.

For YouTube, even though the object (video) was success-

fully uploaded, the app lost the post itself. Instagram and

Keepass2 both created a local partial object; Keepass2 ad-

ditionally failed to recover the table data resulting in a

dangling pointer to the object. Dropbox created a conflict

file with a partial object (local corruption) and spread the

corruption to the second device, just like Evernote.

Our study reveals that mobile apps still lose or corrupt

data in spite of abundant prior research, analysis tools, and

data-sync services. First, handling objects was particu-

larly problematic for most apps – no app in our study was

able to correctly recover from a crash during object up-

dates. Second, instead of ensuring correct recovery, some

apps take the easier route of disabling object updates alto-

gether. Third, in several cases, apps fail to notify the user

of an error causing further corruption. The study further

motivates us to take a holistic approach for transparently

handling failures inside a data-sync service and provide a

useful high-level abstraction to apps.

3 App Development with Simba

3.1 Data Model and API

Data Model: Simba’s data model is designed such that

apps can store all of their data in a single, unified, store

without worrying about how it is stored and synced. The

high-level abstraction that enables apps to have a data

model spanning tables and objects is called a Simba Ta-

ble (sTable in short). To support this unified view of data

management, Simba, under the hood, ensures that apps al-

ways see a consistent view of data stored locally, on the

cloud, and other mobile devices.

The unit of client-server consistency in Simba is an in-

dividual row of an sTable (sRow in short) which consists

of tabular data and all objects referred in it; objects are not

shared across sRows. Simba provides causal consistency

2

App DM Disruption Recover Outcome Crash Recover Outcome

W
it

h
T

ab
le

O
n
ly

Fetchnotes

Kinvey (notes)

T Upd/Del note ✓ Auto resync Upd/Del

note

✓ All or nothing

Syncboxapp

Dropbox (notes)

T Upd/Del note ✓ Auto resync Upd/Del

note

✓ All or nothing

Township Parse

(social game)

T Background

autosave

✗ App closed with data loss Background

autosave

✓ All or nothing

UPM Dropbox

(pwd manager)

T Set pwd ✗ No notification Set pwd ✓ All or nothing

TomDroid

(notes)

T Upd/Del note ✗ No notification. Del

blocked if other device

syncs even w/o change

Upd/Del

note

✓ All or nothing

Hiyu Kinvey

(grocery list)

T Upd/Del item ✗ Change loss if app is

closed during disruption

Upd/Del

item

✓ All or nothing

W
it

h
o
u
t

O
b
j

U
p
d
at

e

Pinterest

(social n/w)

T+O Create pin-

board

✓ Manual resync Set/Del pin ✓ All or nothing

Twitter

(social n/w)

T+O Post (re)tweet ✓ Manual resync Post/Del

tweet

✓ All or nothing

Facebook

(social n/w)

T+O Post status

Post comment

✓ Auto resync

✗ Comment loss if status is

closed during disruption

Post/Del

status

✓ All or nothing

Tumblr

(blogging)

T+O Post image ✗ Post loss if notification or

app closed during disruption

Post/Del

image

✓ All or nothing

YouTube

(video stream)

T+O Post/Del video ✓ Auto resync Del video

Post video

✓ All or nothing

✗ Post loss even for video-upload success

Instagram

(social n/w)

T+O Post image

Post comment

✓ Manual resync

✗ Comment loss if image is

closed during disruption

Del image

Post image

✓ All or nothing

✗ Partial image created locally in gallery

= corruption

W
it

h
O

b
j

U
p
d
at

e Keepass2 Drop-

box (pwd mgr)

O Set/Del pwd ✗ No notification Set pwd ✗ Password loss; partial object created lo-

cally in “kdbx” filesystem = corruption

Dropbox

(cloud store)

T+O Upd/Del file ✓ Auto resync Upd file ✗ Partial conflict file created; file corrup-

tion and spread to second client

Evernote

(notes)

T+O Upd/Del note ✗ Manual sync creates mul-

tiple copies of same note

Upd note

image

✗ Note image corrupted and spread to

second client

Table 1: Study of App Failure Recovery. DM denotes the data model (T: tables only; O: objects only; T+O: app stores both tables and

objects). ✗ denotes problem behavior and ✓ indicates correct handling. “Disruption” and “crash” columns list the workload for that test.

semantics with all-or-nothing atomicity over an sRow for

both local and sync operations; this is a stronger guar-

antee than provided by existing sync services. An app

can, of course, have a tabular-only or object-only schema,

which Simba trivially supports. Since an sRow represents

a higher-level, semantically meaningful, unit of app data,

ensuring its consistency under all scenarios is quite valu-

able to the developer and frees her from writing compli-

cated transaction management and recovery code. Fig-

ure 1 shows Simba’s data model.

Simba currently does not provide atomic sync across

sRows or sTables. While some apps may benefit from

atomic multi-row sync, our initial experience has shown

that ACID semantics under sync for whole tables would

needlessly complicate Simba design, lead to higher per-

formance overheads, and be overkill for most apps.

API: sClient’s API, described in Table 2, is similar to

the popular CRUD interface but with four additional fea-

tures: 1) CRUD operations on tables and objects 2) opera-

tions to register tables for sync 3) upcalls for new data and

conflicts 4) built-in conflict detection and support for reso-

lution. Objects are written to, or read from, using a stream

abstraction which allows Simba to support large objects; it

also enables locally reading or writing only part of a large

object – a property that is unavailable for BLOBs (binary

large objects) in relational databases [38].

Since different apps can have different sync require-

ments, Simba supports per-table sync policies controlled

by the app developer using the sync methods (register-

WriteSync etc). Each sTable can specify a non-zero pe-

riod which determines the frequency of change collection

for sync. A delay tolerance (DT) value can be speci-

fied which gives an additional opportunity for data to be

coalesced across apps before sending over the network;

DT can be set to zero for latency-sensitive data. Even

when apps have non-aligned periods, DT enables cross-

app traffic to be aligned for better utilization of the cel-

lular radio. If an app needs to sync data on-demand, it

can use the writeSyncNow() and readSyncNow() methods.

Simba’s delay-tolerant transfer mechanism directly bene-

fits from prior work [22, 49]. Since sync happens in the

background, when new data is available or conflicts occur

due to sync, apps are informed using upcalls. An app can

begin and end a conflict-resolution transaction at-will and

iterate over conflicted rows to resolve with either the local

copy, the server copy, or an entirely new choice.

3

CRUD (on tables and objects)

createTable(TBL, schema, properties)

updateTable(TBL, properties)

dropTable(TBL)

outputStream[]← writeData(TBL, TBLData, objColNames)

outputStream[]← updateData(TBL, TBLData, objNames, selection)

inputStream[]← rowCursor← readData(TBL, projection, selection)

deleteData(TBL, selection)

Table and Object Synchronization

registerWriteSync(TBL, period, DT, syncpref)

unregisterWriteSync(TBL)

writeSyncNow(TBL)

registerReadSync(TBL, period, DT, syncpref)

unregisterReadSync(TBL)

readSyncNow(TBL)

Upcalls

newDataAvailable(TBL, numRows)

dataConflict(TBL, numConflictRows)

Conflict Resolution

beginCR(TBL)

getConflictedRows(TBL)

resolveConflict(TBL, row, choice)

endCR(TBL)

Table 2: Simba Client Interface. Operations available to mo-

bile apps for managing table and object data. TBL refers to table name.

3.2 Writing a Simba App

Simba’s unified API simplifies data management for apps;

this is perhaps best shown with an example. We consider a

photo-sharing app which stores and periodically syncs the

images, along with their name, date, and location. First,

create an sTable by specifying its schema:

sclient.createTable("album", "name VARCHAR, date

INTEGER, location FLOAT, photo OBJECT", FULL_SYNC);

Next, register for read (download) and write (upload)

sync. Here, the app syncs photos every 10 mins (600s)

with a DT of 1 min (60s) for both reads and writes, select-

ing WiFi for write and allowing 3G for read sync.

sclient.registerWriteSync("album",600,60,WIFI);

sclient.registerReadSync("album",600,60,3G);

A photo can be added to the table with writeData() fol-

lowed by writing to the output stream.

// byte[] photoBuffer has camera image

List<SCSOutputStream> objs = sclient.writeData("album"

, new String[]{"name=Kopa","date=15611511","

location=24.342"}, new String[] {"photo"});

objs[0].write(photoBuffer); objs[0].close();

Finally, a photo can be retrieved using a query:

SCSCursor cursor = sclient.readData("album", new

String[] { "location", "photo" }, "name=?", new

String[] { "Kopa" }, null);

// Iterate over cursor to get photo data

SCSInputStream mis = cursor.getInputStream().get(1);

4 Simba Design

4.1 Simba Server (sCloud)

The server is a scalable cloud store that manages data

across multiple apps, tables, and clients [45]. It provides a

<1fc2e,0> <1fc2e,1> <1fc2e,2> <ab1fd,0> <ab1fd,1>

RowId Name Photo

2 Lucy

1 Snoopy

RowId Name Photo

Snoopy1 ab1fd

2 Lucy 1fc2e

....

Table Store

Object Store

sTable (logical)

sTable (physical)

Figure 1: Simba Client Data Store. Table Store is imple-

mented using a SQL database and Object Store with a key-value store

based on LSM tree. Objects are split into fixed-size chunks.

network protocol for data sync, based on a model in which

it is the responsibility of an sClient to pull updates from

the server and push any local modifications, on behalf of

all device-local Simba-apps; the sClient may register with

the server to be notified of changes to subscribed tables.

Sync Protocol: To discuss sClient’s design we need to

refer to the semantics offered by the server through the

network protocol. The server is expected to provide dura-

bility, atomicity of row updates, and multi-version concur-

rency control. Thus, the sClient is exposed to versions,

which accompany any data in messages exchanged with

the server. Simba implements a variant of version vectors

that provides concurrency control with causal consistency

semantics [33]. Since all sClients sync to a central sCloud,

we simplify the versioning scheme to have one version

number per row instead of a vector [42]. Each sRow has

a unique identifier IDrow generated from a primary key, if

one exists, or randomly, and a version Vrow.

Row versions are incremented at the server with each

update of the row; the largest row version in a ta-

ble is maintained as the table version, Vtable, allowing

us to quickly identify which rows need to be synchro-

nized. A similar scheme is used in gossip protocols [60].

Since Simba supports variable-sized, potentially large,

objects, the protocol messages explicitly identify objects’

partially-changed sets that need to be applied atomically.

4.2 Simba Client (sClient)

sClient allows networked Simba-apps to continue to have

a local I/O model which is shown to be much easier to

program for [14]; sClient insulates the apps from server

and network disruptions and allows for a better overall

user experience. Figure 2 shows the simplified archi-

tecture of the sClient; it is designed to run as a device-

wide service which (1) provides all Simba-apps with ac-

cess to their table and object data (2) manages a device-

local replica to enable disconnected operations (3) ensures

fault-tolerance, data consistency, and row-level atomicity

(4) carries out all sync-related operations over the net-

work. Simba-apps link with sClient through a lightweight

4

Figure 2: Simba Client Architecture.

library (sClientLib) which provides the Simba Client In-

terface (Table 2) and forwards client operations to sClient;

the apps are alerted through upcalls for events (e.g., new

data, conflict) that happen in the background. Finally,

sClient monitors liveness of apps, so that memory re-

sources can be freed in case of app crash.

The sClient data store (§4.2.1) provides a unified ab-

straction over a table store and an object store. SimbaSync

performs sync processing (§4.2.2) with the sCloud; for up-

stream sync, it collects the locally-modified data, and for

downstream sync, it applies changes obtained from the

server into the local store, detects conflicts, and gener-

ates upcalls to apps. The sync protocol and the local data

store together provide transparent failure handling for all

Simba-apps (§5). The Network Manager handles all net-

work connectivity and server notifications for the sClient

(§6); it provides an efficient utilization of the device’s cel-

lular radio through coalescing and delay-tolerance.

Implementation: sClient is currently implemented on

Android, however, the design principles can be applied

to other mobile platforms such as iOS. sClient is imple-

mented as a daemon called the Simba Content Service

(SCS) which is accessed by mobile apps via local RPC;

on Android we use an AIDL [1] interface to communicate

between the apps and the service. An alternate approach

– to link directly with the app – is followed by Drop-

box [16] and Parse [43] but our approach allows sClient to

shape network traffic for all Simba-apps on the same de-

vice thereby benefiting from several cross-app optimiza-

tions. While the benefits of using persistent connections

have been long known [35], individual apps use TCP con-

nections in a sub-optimal manner with frequent connec-

tion establishment and teardown. sClient’s design allows

it to use a single persistent TCP connection to the sCloud

on behalf of multiple apps; the same connection is also re-

used by the server for delivering notifications, providing

additional savings, similar to Thialfi [9].

A misbehaving app can potentially adversely affect

other Simba-apps. In practice, we believe that develop-

ers already have an incentive to write well-behaved apps

to keep users satisfied. In the future, fine-grained account-

ing of data, similar to Android’s accounting, can be built

into Simba to further discourage such behavior.

4.2.1 Simba Client Data Store

The sClient Data Store (SDS) is responsible for stor-

ing app data on the mobile device’s persistent storage

(typically the internal flash memory or the external SD

card). For Simba-apps, this means having the capability

to store both tabular data and objects in a logically uni-

fied manner. The primary design goal for SDS is to en-

able, and efficiently support, CRUD operations on sRows;

this requires the store to support atomic updates over

the local data. Additionally, since objects are variable-

sized and potentially large, the store also needs to sup-

port atomic sync of such objects. Since the store per-

sistently stores all local modifications, a frequent query

that it must efficiently support is change detection for up-

stream sync; SDS should be able to quickly determine

sub-object changes. Figure 1 shows the SDS data layout.

Objects are subdivided into fixed-size chunks and

stored in a key–value store (KVS) that supports range

queries. The choice of the KVS is influenced by the

need for good throughput for both appends and overwrites

since optimizing for random writes is important for mo-

bile apps [28]. Each chunk is stored as a KV–pair, with

the key being a 〈ob ject id, chunk number〉 tuple. An ob-

ject’s data is accessed by looking up the first chunk of the

object and iterating the KVS in key order.

Local State: sClient maintains additional local state,

persistent and volatile, for sync and failure handling. Two

persistent per-row flags, FlagTD (table dirty) and FlagOD

(object dirty), are used to identify locally-modified data,

needed for upstream sync. To protect against partial ob-

ject sync, we maintain for each row CountOO, the num-

ber of objects opened for update. A write transaction for

a row is considered closed when all its open objects are

closed. Each row has two more persistent flags, FlagSP

(sync pending) and FlagCF (conflict), which track its cur-

rent sync state. Finally, an in-memory dirty chunk table

(DCT) tracks chunks that have been locally modified but

not yet synced. This obviates the need to query the store

for these changes during normal operation.

Implementation: We leverage SQLite to implement

the tabular storage with an additional data type represent-

ing an object identifier (ob ject id). Object storage is im-

plemented using LevelDB [32] which is a KVS based on a

log-structured merge (LSM) tree [40]; LevelDB meets the

throughput criteria for local appends and updates. Lev-

elDB also has snapshot capability which we leverage for

atomic sync. There is no native port of LevelDB for An-

droid so we ported the original C++ LevelDB code using

Android’s Native Development Kit (NDK). We use one

instance of LevelDB to keep objects for all tables to en-

sure sequential writes for better local performance [28].

Since the local state is stored in an sRow’s tabular part,

SQLite ensures its consistent update.

5

4.2.2 Sync processing

An sClient independently performs upstream and down-

stream sync. The upstream sync is initiated based on the

specified periodicity of individual tables, and using local

state maintained in (FlagTD, FlagOD) to determine dirty

row data; these flags are reset upon data collection. For

rows with dirty objects, chunks are read one-by-one and

directly packed into network messages.

Since collecting dirty data and syncing it to the server

may take a long time, we used the following techniques

to allow concurrent operations by the foreground apps.

First, sClient collects object modifications from LevelDB

snapshots of the current version. As sClient syncs a mod-

ified object only after it is closed and the local state is

updated (decrement CountOO by 1), sClient always en-

sures a consistent view of sRows at snapshots. Second,

we allow sClient to continue making modifications while

previous sync operations are in-flight; this is particularly

beneficial if the client disconnects and sync is pending

for an extended duration. These changes set sRow’s local

flags, FlagTD or FlagOD, for collection during the subse-

quent sync. For this, sClient maintains a sync pending flag

FlagSP which is set for the dirty rows, once their changes

are collected, and reset once the server indicates success.

If another sync operation starts before the previous one

completes, rows with FlagSP already set are ignored.

Downstream sync is also initiated by an sClient in re-

sponse to a server notification of changes to a table. The

client pulls all rows that have a version greater than the lo-

cal Vtable, staging the downstream data until all chunks of

a row are received and then applying it row-by-row onto

the sClient data store in increasing Vrow order.

Conflicts on upstream sync are determined through

Vrow mismatch on the server, while for downstream by

inspecting the local dirty flag of received rows. To en-

able apps to automatically resolve [31] or present to its

users, the server-returned conflicted data is staged locally

by sClient and the relevant Simba-app is notified. sClient

is designed to handle conflicting updates gracefully. Con-

flicted rows are marked (FlagCF) to prevent further up-

stream sync until the conflict is resolved. However, apps

can resolve conflicts at their own convenience and can

continue reading and writing to their local version of the

row without sync. We believe this greatly improves the

user experience since apps do not have to abruptly inter-

rupt operations when conflicts arise.

5 Transparent Failure Handling
Mobile apps operate under congested cellular net-

works [13], network disruptions [20], frequent service and

app crashes [10], and loss of battery [44]. Mobile OS

memory management can also aggressively kill apps [12].

Failure transparency is a key design objective for

sClient which it achieves through three inter-related as-

pects. First, the mechanism is comprehensive: the sys-

tem detects each possible type of failure and the recovery

leaves the system in a well-defined state for each of them.

Second, recovery leaves the system not merely in a known

state, but one that obeys high-level consistency in accor-

dance with the unified data model. Third, sClient is judi-

cious in trading-off availability and recovery cost (which

itself can be prohibitive in a mobile environment). Barring

a few optimizations (discussed in §5.2), an sClient main-

tains adequate local metadata to avoid distributing state

with the server for the purposes of recovery [41]. sClients

are stateful for a reason: it allows the sync service, hav-

ing many mobile clients, which can suffer from frequent

failures, and a centralized server, to decouple their failure

recovery thereby improving availability.

5.1 Comprehensive & High-level Consistent

sClient aims to be comprehensive in failure handling and

to do so makes the use of a state machine [53]. Each

successful operation transitions sClient from one well-

defined state to another; failures of different kinds lead

to different faulty states each with well-defined recovery.

We first discuss network failures which affect only the

sync operations. As discussed previously, the server re-

sponse to upstream sync can indicate either success or

conflict and to downstream sync can indicate either suc-

cess or incompletion. Table 3(a) describes sClient’s sta-

tus in terms of the local sync-pending state (FlagSP) and

the relevant server response (RCO, RCT , RUO, RUT); note

that only a subset of responses may be relevant for any

given state. Each unique state following a network dis-

connection, for upstream or downstream sync, represents

either a no-fault or a fault situation; for the latter, a recov-

ery policy and action is specified sClient. Tables 3 (b) and

(c) specify the recovery actions taken for failures during

upstream and downstream sync respectively. The specific

action is determined based on a combination of the dirty

status of the local data and the server response.

Crashes affect both sync and local operations and the

state of the SDS is the same whether sClient, Simba-app,

or the device crash. sClient detects Simba-app crashes

through a signal on a listener and de-allocates in-memory

resources for the app. Table 4 shows the recovery actions

taken upon sClient restart after a crash; for a Simba-app

crash, recovery happens upon its restart.

sClient handles both network failures and crashes while

maintaining all-or-nothing update semantics for sRows –

in all cases, the state machine specifies a recovery ac-

tion that preserves the atomicity of the tabular and object

data – thereby ensuring the consistency of an app’s high-

level unified view; this is an important value proposition

of sClient’s failure transparency to mobile apps. As seen

in Table 4, when an object is both dirty and open (FlagOD

= 1 & CountOO > 0), a crash can lead to row inconsis-

6

Type State Upon Network Disconnection Implication Recovery Policy Action

Up
SP=0 No sync Not needed None (no-fault)
SP=1, before SyncUpResult Missed response Reset & retry SP←0, TD←1, if ∃DCT OD←1

stream SP=1, after SyncUpResult(RCO=0) Completed Roll forward None (no-fault)
SP=1, after SyncUpResult(RCO=1) Partial response Reset & retry See Table 3(b)

Down

Before Notify No sync Not needed None (no-fault)
After Notify Sync needed Normal operation Send SyncDownstream
After SyncDownstream Missed response Retry Resend SyncDownstream

stream After SyncDownResult(RUO=0) Completed Roll forward See Table 3(c)
After SyncDownResult(RUO=1) Partial response Reset & retry See Table 3(c)

(a) Sync Failure Detection and Recovery Policy

Flags Resp.
Recovery Action

TD OD RCT
0 0 * Delete entry, SP←0
0 1 * Delete entry, SP←0, TD←1, if ∃DCT OD←1
1 0 * Delete entry, SP←0, TD←1
1 1 * Delete entry, SP←0, TD←1, if ∃DCT OD←1

(b) Recovery action for SyncUpstream

Flags Response
Recovery Action

TD OD RUT RUO

* * * 1 Delete entry, resend w/ new
Vtable: SyncDownstream

0 0 1 0 Update table data
1 * 1 0 Conflict on table data

(c) Recovery action for SyncDownstream

Table 3: Network Disconnection: State Space for Failure Detection and Recovery. CF= 0 for all the above states since

sync is in-progress; OO is irrelevant. ∃DCT→Obj exists in DIRTYCHUNKTABLE. Delete entry→Delete row in TBLCONFLICT and corresponding

object in LevelDB. TD: Table Dirty, OD: Object Dirty, SP: Sync Pending, RCO: Response conflict for object, RCT : Response conflict for table,

RUO: Response update for object, RUT : Response update for table. Note TD and OD can be re-set to 1 after SP=1 since Simba allows local ops to

safely proceed even when prior sync is in-progress. * indicates recovery action is independent.

tency, i.e., a torn write. Similarly, a network disruption

during an object sync can cause a partial sync; sClient

detects and initiates appropriate torn recovery.

5.2 Judicious

sClient balances competing demands: on the one hand,

normal operation should be efficient; on the other, failure

recovery should be transparent and cheap. sClient main-

tains persistent state to locally detect and recover from

most failures; for torn rows, after local detection, it recov-

ers efficiently through server assistance. There are two

kinds of tradeoffs it must make to keep recovery costs low.

5.2.1 Tradeoff: Local State vs. Network I/O

When sClient recovers from a crash, it can identify

whether the object was dirty using FlagOD but it cannot

determine whether it was completely or partially written

to persistent storage; the latter would require recovery.

CountOO counter enables making this determination: if

it is set to zero, sClient can be sure that local data is con-

sistent and avoid torn recovery using the server. The cost

to sClient is an extra state of 4 bytes per row. However,

one problem still remains: to sync this object, sClient still

needs to identify the dirty chunks. The in-memory DCT

will be lost post-crash and force sClient to either fetch all

chunks from the server or send all chunks to the server for

chunk-by-chunk comparison. sClient thus pays the small

cost of persisting DCT, prior to initiating sync, to prevent

re-syncing entire, potentially large, objects. Once per-

sisted, DCT is used to sync dirty chunks after a crash and

removed post-recovery. If sClient crashes before DCT is

written to disk, it sends all chunks for dirty objects.

TD OD OO SP CF Recovery action after crash (Flags)

0 0 =0 0 0 Do nothing
1 Conflict upcall

0 0 =0 1 – Restart SyncUpstream with table data and object if

∃DCT (TD←1, OD←1 if ∃DCT, SP←0)
0 0 >0 0 0 Do nothing (OO←0)

1 Conflict upcall (OO←0)
0 0 >0 1 – Restart SyncUpstream with table data and object if

∃DCT (TD←1, OD←1 if ∃DCT, OO←0, SP←0)
0 1 =0 0 0 Start SyncUpstream with full object

1 Conflict upcall
0 1 =0 1 – Restart SyncUpstreamwith full row (TD←1, SP←0)

← No information on which object is dirty
0 1 >0 0 * Recover Torn write (OD←0, OO←0)
0 1 >0 1 – Recover Torn write (OD←0, OO←0, SP←0)
1 0 =0 0 0 Start SyncUpstream with table data

1 Conflict upcall
1 0 =0 1 – Restart SyncUpstream with table data and object if

∃DCT (OD←1 if ∃DCT, SP←0)
1 0 >0 0 0 Start SyncUpstream with table data (OO←0)

1 Conflict upcall (OO←0)
1 0 >0 1 – Restart SyncUpstream with table data and object if

∃DCT (OD←1 if ∃DCT, OO←0, SP←0)
1 1 =0 0 0 Start SyncUpstream with full row

1 Conflict upcall
1 1 =0 1 – Restart SyncUpstream with full row (SP←0)
1 1 >0 0 * Recover Torn write (TD←0, OD←0, OO←0)
1 1 >0 1 – Recover Torn write (TD←0, OD←0, OO←0, SP←0)

Table 4: Client Crash: State Space for Failure Detec-

tion & Recovery. TD: Table Dirty, OD: Object Dirty, OO: Object

Open Count, SP: Sync Pending, CF: Row Conflict; * indicates recovery

action independent of flag; – indicates state with flag=1 is not possible

5.2.2 Tradeoff: Local I/O vs. Network I/O

If an object does have a non-zero CountOO post-crash, it is

indeed torn. The most obvious way to recover torn rows

is to never update data in-place in the SDS, but instead al-

ways write out-of-place first; once the data is successfully

written, it can be copied to the final location similar to a

write-ahead-log or journaling. Instead of paying the over-

head during common-case operation, in this case, sClient

takes assistance from Simba.

At any point in time, Simba has some consistent view of

7

Operation Method Throughput (MB/s)

Update In-place 2.29 ± 0.08
Out-of-place 1.37 ± 0.04

Read In-place 3.94 ± 0.04
Out-of-place 3.97 ± 0.07

Table 5: Server-assisted Recovery. Comparison of in-place

and out-of-place local throughput with 1KB rows

that row; the client relies on this observation to either roll-

back or roll-forward to a consistent state. If sClient detect

a local torn row during recovery, it obtains a consistent

version of the row from the server; this is akin to rollback

for aborted database transactions [36]. If the server has

since made progress – the client in essence rolls forward.

If the client is disconnected, recovery cannot proceed, but

also does not prevent normal operation – only the torn

rows are made unavailable for local updates. For compar-

ison, we also implement an out-of-place SDS; as shown in

Table 5, sClient is able to achieve 69% higher throughput

with in-place updates as opposed to out-of-place updates

for updating rows with 1KB objects.

6 Transparent Network Efficiency
Simba sync is designed to make judicious use of cellu-

lar bandwidth and device battery through a custom-built

network protocol with two optimizations:

Delay tolerance and coalescing: typically, many apps

run in the background as services, for example to send/re-

ceive email, update weather, synchronize RSS feeds and

news, and update social networking. sClient is designed

as a device-wide service so that sync data for multiple in-

dependent apps can be managed together and transferred

through a shared persistent TCP connection. Further,

Simba supports delay-tolerant data scheduling which can

be controlled on a per-table basis. Delay tolerance and co-

alescing has two benefits. 1) Improved network footprint:

allows data transfer to be clustered, reducing network ac-

tivity and improving the odds of the device turning off the

radio [49]. Control messages from the server are subject

to the same measures. 2) Improved scope for data com-

pression: outgoing data for multiple apps is coalesced to

improve the compression [23].

Fine-grained change detection: an entire object need

not be synced if only a part changes. Even though data is

versioned per row, sClient keeps internal soft-state (DCT)

to detect object changes at a configurable chunk level;

Simba server does the same for downstream sync.

Implementation: Even though sRows are the logi-

cal sync unit, sClient’s Network Manager packs network

messages with data from multiple rows, across multiple

tables and apps, to reduce network footprint. Simba’s net-

work protocol is implemented using Protobufs [7], which

efficiently encodes structured data, and TLS for secure

network communication; the current prototype uses two-

way SSL authentication with client and server certificates.

7 Evaluation
We wish to answer the following two questions:

• Does Simba provide failure transparency to apps?

• Does Simba perform well for sync and local I/O?

We implemented sClient for Android interchangeably

using Samsung Galaxy Nexus phones and an Asus Nexus

7 tablet all running Android 4.2. WiFi tests were on a

WPA-secured WiFi network while cellular tests were run

on 4G LTE: KT and LGU+ in South Korea and AT&T in

US. Our prototype sCloud is setup using 8 virtual ma-

chines partitioned evenly across 2 Intel Xeon servers each

with a dual 8-core 2.2 GHz CPU, 64GB DRAM, and eight

7200 RPM 2TB disks. Each VM was configured with

8GB DRAM, one data disk, and 4 CPU cores.

7.1 Building a Fault-tolerant App

The primary objective of Simba is to provide a high-level

abstraction for building fault-tolerant apps. Evaluating

success, while crucial, is highly subjective and hard to

quantify; we attempt to provide an assessment through

three qualitative means: (1) comparing the development

effort in writing equivalent apps using Simba and Drop-

box. (2) development effort in writing a number of Simba-

apps from scratch. (3) observing failure recovery upon

systematic fault-injection in sClient.

7.1.1 Writing Apps: Simba vs. Dropbox

Objective: is to implement a photo-sync app that stores

album metadata and images. AppS is to be written using

Simba and AppD using Dropbox. We choose Dropbox

since it has the most feature-rich and complete API of

existing systems and is also highly popular [56]; Drop-

box provides APIs for files (Filestore) and tables

(Datastore). AppS and AppD must provide the same

semantics to the end-user: a consistent view of photo al-

bums and reliability under common failures; we compare

the effort in developing the two equivalent apps.

Summary: achieving consistency and reliability was

straightforward for AppS taking about 5 hours to write

and test by 1 developer. However, in spite of considerable

effort (3 – 4 days), AppD did not meet all its objectives;

here we list a summary of the limitations:

1. Dropbox does not provide any mechanism to consis-

tently inter-operate the table and object stores.

2. Dropbox Datastore in-fact does not even provide

row-level atomicity during sync (only column-level)!

3. Dropbox does not have a mechanism to handle torn

rows and may sync inconsistent data.

4. Dropbox carries out conflict resolution in the back-

ground and prevents user intervention.

Methodology: we describe in brief our efforts to over-

come the limitations and make AppD equivalent to AppS ;

testing was done on 2 Android smartphones – one as

8

Apps Description Total LOC Simba LOC

Simba-Notes “Rich” note-taking with embedded images and media; relies on Simba for conflict detection and

resolution, sharing, collaboration, and offline support. Similar to Evernote [3]

4,178 367

Surveil Surveillance app capturing images and metadata (e.g., time, location) at frequent intervals; data

periodically synced to cloud for analysis. Similar to iCamSpy [26]

258 58

HbeatMonitor Continuously monitors and records a person’s heart rate, cadence and altitude using a Zephyr

heartbeat sensor [63]; data periodically synced to cloud for analysis. Similar to Sportstracklive [8]

2,472 384

CarSensor Periodically records car engine’s RPM, speed, engine load, etc using a Soliport OBD2 sensor

attached to the car and then syncs to the cloud; similar to Torque car monitor [59]

3,063 384

SimbaBench Configurable benchmark app with tables and objects to run test workloads 207 48

AppS Simba-based photo-sync app with write/update/read/delete operations on tabular and object data 527 170
AppD Dropbox-based photo-sync app written to provide similar consistency and reliability as AppS 602 –

sClient Simba client app which runs as a background daemon on Android 11,326 –
sClientLib Implements the Simba SDK for writing mobile apps; gets packaged with a Simba-app’s .apk file 1,008 –

Table 6: Lines of Code for Simba and Apps. Total LOC counted using CLOC; Simba LOC counted manually

writer and the other as the reader. We were successful

with 1, 2 but not with 3, 4.

✓1. Consistency across stores: we store AppD images

in Filestore and album info in Datastore; to ac-

count for dependencies, we create an extra Datastore

column to store image identifiers. To detect file modifica-

tions, we maintain Dropbox listeners in AppD.

Writes: when a new image is added on the writer, the

app on the reader receives separate updates for tables and

files, Since Dropbox does not provide row-atomicity, it is

possible for Simba metadata columns to sync before app

data. To handle out-of-order arrival of images or album

info prior to Simba metadata, we set flags to indicate tab-

ular and object sync completion; when Simba metadata

arrives, we check this flag to determine if the entire row is

available. The reader then displays the image.

Updates: are more challenging. Since the reader does

not know the updated columns, and whether any objects

are updated, additional steps need to be taken to determine

the end of sync. We create a separate metadata column

(MC) to track changes to Datastore; MC stores a list

of updated app-columns at the writer. We also issue sync

of MC before other columns so that the reader is made

aware of the synced columns. Since Dropbox does not

provide atomicity over row-sync, the reader checks MC

for every table and object column update.

Deletes: once the writer deletes the tabular and object

columns, both listeners on the reader eventually get noti-

fied, after which the data is deleted locally.

✓2. Row-atomicity for tables+files: for every column up-

date, Datastore creates a separate sync message and

sends the entire row; it is therefore not possible to dis-

tinguish updated columns and their row version at sync.

Atomic sync with Dropbox thus requires even more meta-

data to track changes; we create a separate table for each

column as a workaround. For example, for an app table

having one table and one object column, two extra tables

need to be created in addition to MC.

For an update, the writer lists the to-be-synced tabular

and object columns (e.g., 〈col1, col3, ob j2〉) in MC and

issues the sync. The reader receives notifications for each

update and waits until all columns in MC are received. In

case a column update is received before MC, we log the

event and revisit upon receiving MC. Handling of new

writes and deletes are similar and omitted for brevity.

✗3. Consistency under failures: Providing consistency un-

der failures is especially thorny in the case of AppD. To

prevent torn rows from getting synced, AppD requires a

separate persistent flag to detect row-inconsistency after

a crash, along with all of the recovery mechanism to cor-

rectly handle the crash as described in §5. Since AppD

also does not know the specific object in the row that

needs to be restored, it would require a persistent data

structure to identify torn objects.

✗4. Consistent conflict detection: Dropbox provides

transparent conflict resolution for data; thus, detecting

higher-level conflicts arising in the app’s data model is

left to the app. Since there is no mechanism to check for

potential conflicts before updating an object, we needed

to create a persistent dirty flag for each object in AppD.

Moreover, an app’s local data can be rendered unrecov-

erable if the conflict resolution occurs in the background

with an “always theirs” policy. To recover from incon-

sistencies, AppD needs to log data out-of-place, requiring

separate local persistent stores.

To meet 3. and 4. implied re-implementing the majority

of sClient functionality in AppD and was not attempted.

7.1.2 Other Simba Apps

We wrote a number of Simba-apps based on existing mo-

bile apps and found the process to be easy; the apps were

robust to failures and maintained consistency when tested.

Writing the apps on average took 4 to 8 hours depending

on the GUI since Simba handled data management. Ta-

ble 6 provides a brief description of the apps along with

their total and Simba-related lines of code (LOC).

7.1.3 Reliability Testing

We injected three kinds of failures, network disruption,

Simba-app crash, and sClient crash, while issuing local,

sync, and conflict handling operations. Table 7 shows,

9

a b c d e f g h i j k l m n o p q r s t u v w x
Tab T T S S, F, R S S, R S, R, F F, R R R, F
Obj C C, O, D C, O, D S, D S, D S, D, R S, D, T, F S, D S, D, R S, D, R, F R R, D, F R R, D, F

(a) Detection. T: FlagTD, O: FlagOD, C: CountOO, D: DCT, S: FlagSP, R: Server Response Table, F: FlagCF

a b c d e f g h i j k l m n o p q r s t u v w x
Tab N N R R, P R R, LR R, LR, P R, P LR LR, P
Obj R LR, SR LR, SR R R R, LR R, LR, P R R, LR R, LR, P R R, LR, P LR LR, P

(b) Recovery. N: No Op, R: Reset, P: Propagate Conflict, LR: Local Recovery, SR: Server-assisted Recovery

Table 7: sClient Detection and Recovery. The table shows detection and recovery policies of sClient for failure at read, write, syncup

and syncdown operations. The operations are a: read tab b: get obj readstream c: read obj d: read tab+obj e: write tab f: get obj writestream g:

write obj h: write tab+obj i: syncup tab only j: syncupresult for tab only k: syncup obj only l: send objfrag for obj only syncup m: syncupresult for

obj only n: get objfrag for obj only syncupresult o: syncup tab+obj p: syncupresult for tab+obj q: get objfrag for tab+obj syncupresult r: notify s:

syncdown t: syncdownresult for tab only u: syncdownresult for obj only v: get objfrag for obj only syncdownresult w: syncdownresult for tab+obj

syncdownresult x: get objfrag for tab+obj syncdownresult.

0 50 100 150 200 250 300 350 400101
102
103
104
105
106

Client 1 (writer)

0 50 100 150 200 250 300 350 400
Time (s)

101
102
103
104
105
106

M
es

sa
ge

 s
iz

e
(b

yt
es

)

Client 2 (reader)

Up
Down
Up
Down

Figure 3: Sync Network Messages. Data and

control transfer profile

Ping 1B col 1B col + 1KB obj0
2000
4000
6000
8000

10000
12000
14000

Ti
m

e
(m

s)

269 626 954177
1989

12528
End-to-end sync latency over WiFi

Simba
Dropbox

Ping 1B col 1B col + 1KB obj0
2000
4000
6000
8000

10000
12000
14000
16000

Ti
m

e
(m

s)

258 816 1095272
1742

13590
End-to-end sync latency over 3G
Simba
Dropbox

Figure 4: Sync Network Latency. Measured end-to-

end for 2 clients

in brief, the techniques employed by sClient. For a given

workload (a – x), gray cells represent unaffected or invalid

scenarios, for example, read operations. A non-empty cell

in detection implies that all cases were accounted for, and

a corresponding non-empty cell in recovery implies cor-

rective action was taken. The absence of empty cells in-

dicates that sClient correctly detected and recovered from

all of the common failures we tested for.

Detection: each cell in Table 7(a) lists the flags used

to detect the status of tables and objects after a failure.

sClient maintained adequate local state, and responses

from the server, to correctly detect all failures. Change

in tabular data was detected by FlagTD (T) for write and

FlagSP (S) for sync as FlagTD is toggled at start of sync.

sClient then performed a check on the server’s response

data (R). Sync conflict was identified by checking FlagCF

(F). Similarly, usage of writestream and object update

were detected by CountOO (C) and FlagOD (O) with the

addition of DCT (D) for sync.

Recovery: each cell in Table 7(b) lists the recovery ac-

tion taken by sClient from among no-op, reset, propa-

gate, and local or server-assisted recovery. No-op (N) im-

plies that no recovery was needed as the data was already

in a consistent state. When a conflict was detected, but

with consistent data, sClient propagated (P) an alert to the

user seeking resolution. With the help of local state, in

most cases sClient recovered locally (LR); for a torn row,

sClient relied on server-assisted recovery (SR). In some

cases, sClient needed to reset flags (R) to mark the suc-

cessful completion of recovery or a no-fault condition.

7.2 Performance and Efficiency

7.2.1 Sync Performance

We want to verify if Simba achieves its objective of pe-

riodic sync. Figure 3 shows the client-server interaction

for two mobile clients both running the SimbaBench (Ta-

ble 6); on Client 1 it creates a new row with 100 bytes

of table data and a (50% compressible) 1MB object every

10 seconds. Client 1 also registers for a 60-second pe-

riodic upstream sync. Client 2 read-subscribes the same

table also with a 60-second period. As can be seen from

the figure, the network interaction for both upstream and

downstream sync shows short periodic burst of activ-

ity followed by longer periods of inactivity. Client 2’s

read subscription timer just misses the first upstream sync

(77s− 95s), so the first downstream sync happens about a

minute later (141s− 157s); for the rest of the experiment,

downstream messages immediately follow the upstream

ones confirming that Simba meets this objective.

We want to evaluate Simba’s sync performance and

10

0 50 100 150 200 250 300
Time (s)

101

102

103

104

105

106

M
es

sa
ge

 s
iz
e

(b
yt

es
)

St
ar

tu
p

Si
m

ba
Be

nc
h

Ca
rS

en
so

r

No
te

s

N/W msgs for individual apps
 (superimposed)

CarSensor
SimbaBench
Notes

800 900 1000 1100 1200 1300 1400
Time (s)

101

102

103

104

105

106

107

M
es
sa
ge
 s
iz
e
(b
yt
es
)

ap
p

w
ri

te
n/

w
 e

nq
ue

ue

ap
p

w
ri

te
n/

w
 e

nq
ue

ue

N/W msgs for combined apps
 without delay tolerance

Combined

800 900 1000 1100 1200 1300 1400
Time (s)

101

102

103

104

105

106

107

M
es
sa
ge
 s
iz
e
(b
yt
es
)

ap
p

w
ri

te

n/
w

 e
nq

ue
ue

ap
p

w
ri

te

n/
w

 e
nq

ue
ue

N/W msgs for combined apps
 with delay tolerance

Combined

Figure 5: Network Transfer For Multiple Apps.

how it compares with Dropbox. Figure 4 compares the

end-to-end sync latency of Simba and Dropbox over both

WiFi and 4G; y-axis is time taken with standard devia-

tion of 5 trials. For these tests we run two scenarios, both

with a single row being synced between two clients: 1)

with only a 1-byte column, and 2) with one 1-byte col-

umn and one 1KB object. The two clients were both in

South Korea. The Dropbox server was located in Califor-

nia (verified by its IP address) whereas the Simba server

was located on US east coast. As a baseline, we also mea-

sured the ping latency from clients to servers. Figure 4

shows that the network latency (“Ping”) is a small com-

ponent of the total sync latency. For both the tests, Simba

performs significantly better than Dropbox; in case 1), by

about 100% to 200%, and in case 2) by more than 1200%.

Since Dropbox is proprietary we not claim to fully under-

stand how it functions; it very well might be overloaded or

throttling traffic. The experiment demonstrates that Simba

performs well even when giving control of sync to apps.

We want to test how quickly Simba resolves conflicts

for a table with multiple writers. Figure 6 shows this be-

havior. The x-axis shows the number of clients (min. 2

clients needed for conflict) and the y-axis shows the aver-

age time to converge (sec) and standard deviation over 5

trials. For “theirs”, the server’s copy is chosen every time

and hence no changes need to be propagated back; for

“mine”, the local copy is chosen every time and re-synced

back to the server. The “no conflicts” case is shown to

establish a baseline – a normal sync still requires changes

to be synced to the server; “mine” always and “theirs”

always represent the worst-case and the best-case scenar-

ios respectively with typical usage falling somewhere in

between. The figure shows that for a reasonable number

(i.e., 5) of collaborating clients, as the number of conflict

resolution rounds increases, it does not impose a signifi-

cant overhead compared to baseline sync, even when se-

lecting the server’s copy; when selecting the local copy,

conflict resolution is fairly quick.

7.2.2 Network Efficiency

We want to evaluate Simba’s impact on network effi-

ciency. Three apps were chosen for this experiment

that generate data periodically: CarSensor app in replay

mode generating about 250 byte rows every second, Sim-

baBench set to create 1MB rows (50% compressible) ev-

ery 10s, and an app that simulates the behavior of Simba-

Notes, by generating ∼300 byte of data using Poisson

distribution with a mean value of 300s and using a fixed

seed for random number generation. CarSensor and Sim-

baBench run with a periodic upstream sync of 60s.

Figure 5 shows a scatter plot of the data transfer profile

of the apps; y-axis is message size on a log scale, and x-

axis is time in seconds. The colored bands are meant to

depict temporal clusters of activity. The “Startup” band

shows the one-time Simba authentication and setup, and

sync registration messages for the tables. We ran the

Simba apps (a) individually, (b) concurrently with Simba-

Notes’s DT=0, and (c) concurrently with Simba-Notes’s

DT=60s. Figure 5(a) shows the super-imposition of the

data transfer profile when the apps were run individually,

to simulate the behavior of the apps running without coor-

dination. As also seen in the figure, while it is possible for

uncoordinated timers to coincide, it is unlikely; especially

so when the period is large compared to the data transfer

time. Aperiodic apps like Simba-Notes also cause uncoor-

dinated transfers. Uncoordinated transfers imply frequent

radio activity and energy consumed due to large tail times.

In Figure 5(b), all apps are run concurrently. The events

generated by Simba-Notes are annotated. We see that the

network transfers of CarSensor and SimbaBench are syn-

chronized, but Simba-Notes still causes network transfer

at irregular times (the thin bands represent network trans-

fers by Simba-Notes). In Figure 5(c), we run an experi-

ment similar to (b) but this time Simba-Notes employs a

delay tolerance of 60s; its network activity is delayed un-

til the next 60s periodic timer along with all pending sync

activity (notice the absent thin bands). The resulting data

transfer is clustered, increasing the odds of the radio being

turned off. The x-axes in (b) and (c) start around 800s as

we measured after a few minutes of app start.

7.2.3 Local I/O Performance

Our objective is to determine whether sClient’s local per-

formance is acceptable for continuous operation, espe-

cially since storage can be a major contributor to perfor-

mance of mobile apps [28]. SimbaBench issues writes,

11

0 1 2 3 4 5
Number of clients

0

20

40

60

80

100

Ti
m

e
(s

ec
)

Theirs

Mine

Conflict Operation (1 tabular + 1 object)
Conflict: "Mine"
No Conflict
Conflict: "Theirs"

Figure 6: Time Taken for Conflict Convergence.

Write Read Delete0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Ti
m
e
(s
ec

)

Performance for local operations
Simba
Dropbox
Ext4
SQLite

Figure 7: sClient Local I/O Performance.

reads, and deletes for one row of data containing one 1MB

object for both sClient with Dropbox (Core API). Fig-

ure 7 shows average times and standard deviation over 5

trials; sClient is about 10% slower than Dropbox for both

writes and reads, primarily due to IPC overhead as sClient

is a background service on Android while Dropbox di-

rectly accesses the file system. sClient performs better

for deletes through lazy deletion – data is only marked

as deleted but physically removed only after sync com-

pletion. sClient and Dropbox both perform several addi-

tional operations over Ext4 and SQLite; we provide this

comparison only as a baseline.

8 Related Work

Data sync and services: sync has been much studied in

the context of portable devices including seminal work

on disconnected operations [30], weakly-consistent repli-

cated storage [37, 55], and data staging [18, 57].

In terms of failure transparency, Bayou [55] provides a

limited discussion of its crash recovery through a write log

but it does not handle objects. LBFS [37] atomically com-

mits files on writeback, preventing corruption on crash or

disruption, but does not handle tables. We find that for

most apps, handling the dependencies – between tabular

and object data – is the biggest source of inconsistency.

Of the existing services, Dropbox is the most compre-

hensive but still does not support sync atomicity for ob-

jects and tables, breaking failure transparency for several

fault conditions. iCloud also provides separate mecha-

nisms for a key-value interface and file sync. Mobius [14]

provides a CRUD API to a table-sync store but does

not support objects at all. Similar to Simba, Parse [43]

and Kinvey [29] are mobile backend-as-a-service offering

GUI integration, administration, and limited data manage-

ment; they only support tables and provide last-writer-

wins semantics which is inadequate for many apps. No

sync service provides delay-tolerant transfer.

Fault tolerance: ViewBox [62] integrates a desktop

FS with a data-sync service so as to sync only consis-

tent views of the local data; the paper also shows how

Dropbox spreads local file corruption which ViewBox ad-

dresses through checksums. Simba focuses on providing

transparent fault-handling to apps; while ViewBox works

only for files, Simba spans both files and tables.

Storage unification: prior work for desktop file sys-

tems has considered database integration but without net-

work sync or a unified API. InversionFS [39] uses Post-

gres to implement a file system with transactional guaran-

tees and fine-grained versioning. TableFS [51] uses sep-

arate storage pools for metadata (an LSM tree) and files

to improve its own performance through metadata opera-

tions. KVFS [54] stores file data and file-system metadata

both in a single key–value store built on top of VT-Trees,

a variant of LSM trees, which enable efficient storage for

objects of various sizes; VT-Trees can be used to build a

better-performing sClient data store, in the future.

Mobile data transfer: Recent research has charac-

terized and optimized data transfer for mobile environ-

ments [21, 25, 47], especially the adverse effects of small,

sporadic transfers [17, 48]; SPDY [5] extends HTTP for

better compression and multiplexes requests over a single

connection to save round trips. This large body of net-

working research has inspired Simba’s network protocol.

9 Conclusions

Building high-quality data-centric mobile apps invariably

mandates the developer to build a reliable and efficient

data management infrastructure – a task for which few

are well-suited. Mobile app developers should not need

to worry about the complexities of network and data man-

agement but instead be able to focus on what they do best

– implement the user interface and features – and deliver

great apps to users. We built Simba to empower devel-

opers to rapidly develop and deploy robust and efficient

mobile apps; through its mobile client daemon, sClient, it

provides background data sync with flexible policies that

suit a large class of mobile apps while transparently han-

dling failures and efficiently utilizing mobile resources.

We plan to release Simba’s source code; please check with

the contact author (Nitin Agrawal) for further details.

12

10 Acknowledgements
We thank our FAST reviewers and shepherd, Jason Nieh,
for their valuable feedback. We thank Dorian Perkins for
his work on Simba Cloud and the IST group at NEC Labs
for its setup; Simba Cloud was also evaluated using NMC
PRObE [19]. Younghwan thanks the ICT R&D program
of MSIP/IITP, Republic of Korea (14-911-05-001).

References

[1] Android Developers Website. http://developer.

android.com/index.html.

[2] Cisco Visual Networking Index: Global Mobile Data Traf-

fic Forecast Update, 2011 – 2016. http://tinyurl.

com/cisco-vni-12.

[3] Evernote App. http://evernote.com.

[4] Google Drive. https://developers.google.

com/drive/.

[5] Google SPDY. https://developers.google.

com/speed/spdy.

[6] Onavo. www.onavo.com.

[7] Protocol Buffers. http://code.google.com/p/

protobuf.

[8] SportsTrackLive Mobile App. http://www.

sportstracklive.com/help/android.

[9] A. Adya, G. Cooper, D. Myers, and M. Piatek. Thialfi:

a client notification service for internet-scale applications.

In SOSP ’11.

[10] S. Agarwal, R. Mahajan, A. Zheng, and V. Bahl. Diag-

nosing mobile applications in the wild. In Proceedings of

the 9th ACM SIGCOMM Workshop on Hot Topics in Net-

works, page 22. ACM, 2010.

[11] N. Agrawal, A. Aranya, and C. Ungureanu. Mobile data

sync in a blink. In HotStorage ’13, San Jose, California.

[12] Android Developers. Processes and Threads.

http://developer.android.com/guide/

components/processes-and-threads.html.

[13] A. Balasubramanian, R. Mahajan, and A. Venkataramani.

Augmenting mobile 3g using wifi. In MobiSys ’10, pages

209–222, 2010.

[14] B.-G. Chun, C. Curino, R. Sears, A. Shraer, S. Madden,

and R. Ramakrishnan. Mobius: unified messaging and data

serving for mobile apps. In MobiSys ’12, 2012.

[15] Dropbox. Dropbox Datastore API. dropbox.com/

developers/datastore, July 2013.

[16] Dropbox Sync API. dropbox.com/developers/

sync.

[17] H. Falaki, D. Lymberopoulos, R. Mahajan, S. Kandula,

and D. Estrin. A first look at traffic on smartphones. In

IMC ’10, 2010.

[18] J. Flinn, S. Sinnamohideen, N. Tolia, and M. Satya-

narayanan. Data Staging on Untrusted Surrogates. In FAST

’03, San Francisco, CA, Apr. 2003.

[19] G. Gibson, G. Grider, A. Jacobson, and W. Lloyd. Probe:

A thousand-node experimental cluster for computer sys-

tems research. volume 38, June 2013.

[20] Y. Go, Y. Moon, G. Nam, and K. Park. A disruption-

tolerant transmission protocol for practical mobile data of-

floading. In MobiOpp’12, 2012.

[21] K. Ha, P. Pillai, W. Richter, Y. Abe, and M. Satya-

narayanan. Just-in-time provisioning for cyber foraging. In

MobiSys ’13, pages 153–166, New York, NY, USA, 2013.

ACM.

[22] S. Hao, N. Agrawal, A. Aranya, and C. Ungureanu. Build-

ing a Delay-Tolerant Cloud for Mobile Data. In IEEE

MDM, June 2013.

[23] D. Harnik, R. Kat, O. Margalit, D. Sotnikov, and

A. Traeger. To Zip or not to Zip: Effective Resource Usage

for Real-Time Compression. In FAST 2013, Feb 2013.

[24] D. Houston. Dropbox dbx: Developer conference keynote.

http://vimeo.com/70089044, 2014.

[25] J. Huang, F. Qian, Y. Guo, Y. Zhou, Q. Xu, Z. M. Mao,

S. Sen, and O. Spatscheck. An in-depth study of lte: Ef-

fect of network protocol and application behavior on per-

formance. In SIGCOMM ’13, 2013.

[26] iCamSpy App. Audio Video Surveillance CCTV. http:

//www.icamspy.com/.

[27] iCloud for Developers. developer.apple.com/

icloud.

[28] H. Kim, N. Agrawal, and C. Ungureanu. Revisiting Stor-

age for Smartphones. In FAST ’12, February 2012.

[29] Kinvey. http://kinvey.com.

[30] J. Kistler and M. Satyanarayanan. Disconnected Operation

in the Coda File System. ACM Trans. Comput. Syst., 10(1),

February 1992.

[31] P. Kumar and M. Satyanarayanan. Flexible and safe reso-

lution of file conflicts. In USENIX ATC ’95, Berkeley, CA,

USA, 1995.

[32] LevelDB: A Fast and Lightweight Key/Value Database Li-

brary. code.google.com/p/leveldb.

[33] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. An-

dersen. A short primer on causal consistency. USENIX

;login magazine, 38(4), Aug. 2013.

[34] Z. Miners. Dropbox adds new tools to make syncing

smarter. http://www.pcworld.com/article/

2043980/dropbox-adds-new-tools-to-

make-syncing-smarter.html, July 2013.

[35] J. C. Mogul. The case for persistent-connection http. In

SIGCOMM, pages 299–313, 1995.

[36] C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and

P. Schwarz. ARIES: A Transaction Recovery Method

Supporting Fine-Granularity Locking and Partial Roll-

backs Using Write-Ahead Logging. ACM Transactions on

Database Systems, 17(1):94–162, March 1992.

13

[37] A. Muthitacharoen, B. Chen, and D. Mazières. A Low-

Bandwidth Network File System. In Proceedings of the

Eighteenth ACM Symposium on Operating Systems Prin-

ciples, pages 174–187, Lake Louise, Alberta, Oct. 2001.

[38] MySQL. MySQL BLOB and TEXT types.

http://dev.mysql.com/doc/refman/5.0/

en/string-type-overview.html.

[39] M. A. Olson. The Design and Implementation of the In-

version File System. In USENIX Winter ’93, San Diego,

CA, Jan. 1993.

[40] P. O’Neil, E. Cheng, D. Gawlick, and E. O’Neil. The log-

structured merge-tree. In Acta Informatica, June 1996.

[41] J. K. Ousterhout. The role of distributed state. In In CMU

Computer Science: a 25th Anniversary Commemorative,

page pp. ACM Press, 1991.

[42] D. S. Parker Jr, G. J. Popek, G. Rudisin, A. Stoughton,

B. J. Walker, E. Walton, J. M. Chow, D. Edwards, S. Kiser,

and C. Kline. Detection of mutual inconsistency in dis-

tributed systems. Software Engineering, IEEE Transac-

tions on, (3):240–247, 1983.

[43] Parse. parse.com.

[44] A. Pathak, Y. C. Hu, and M. Zhang. Where is the energy

spent inside my app?: fine grained energy accounting on

smartphones with eprof. In EuroSys ’12, pages 29–42,

New York, NY, USA, 2012. ACM.

[45] D. Perkins, N. Agrawal, A. Aranya, C. Yu, Y. Go, H. Mad-

hyastha, and C. Ungureanu. Simba: Tunable End-to-End

Data Consistency for Mobile Apps. In Proceedings of the

European Conference on Computer Systems (EuroSys ’15),

Bordeaux, France, April 2015.

[46] K. P. Puttaswamy, C. C. Marshall, V. Ramasubramanian,

P. Stuedi, D. B. Terry, and T. Wobber. Docx2go: collabo-

rative editing of fidelity reduced documents on mobile de-

vices. In MobiSys ’10, 2010.

[47] F. Qian, K. S. Quah, J. Huang, J. Erman, A. Gerber,

Z. Mao, S. Sen, and O. Spatscheck. Web caching on smart-

phones: ideal vs. reality. In MobiSys ’12, 2012.

[48] F. Qian, Z. Wang, Y. Gao, J. Huang, A. Gerber, Z. Mao,

S. Sen, and O. Spatscheck. Periodic transfers in mobile

applications: network-wide origin, impact, and optimiza-

tion. In WWW ’12, 2012.

[49] M.-R. Ra, J. Paek, A. B. Sharma, R. Govindan, M. H.

Krieger, and M. J. Neely. Energy-delay tradeoffs in smart-

phone applications. In Proceedings of the 8th Interna-

tional Conference on Mobile Systems, Applications, and

Services, MobiSys ’10, pages 255–270, New York, NY,

USA, 2010. ACM.

[50] L. Ravindranath, S. Nath, J. Padhye, and H. Balakrishnan.

Automatic and scalable fault detection for mobile applica-

tions. In ACM MobiSys, 2014.

[51] K. Ren and G. Gibson. Tablefs: Enhancing metadata ef-

ficiency in the local file system. In USENIX ATC, June

2013.

[52] D. ROWINSKI. Why the facebook-parse deal makes

parse’s rivals very, very happy. http://readwrite.

com/2013/04/29/parse-acquisition-

makes-its-rivals-very-happy, April 2013.

[53] F. B. Schneider. Implementing fault-tolerant services us-

ing the state machine approach: A tutorial. ACM Comput.

Surv., 22(4):299–319, Dec. 1990.

[54] P. J. Shetty, R. P. Spillane, R. R. Malpani, B. Andrews, ,

J. Seyster, and E. Zadok. Building Workload-Independent

Storage with VT-Trees. In FAST ’13, February 2013.

[55] D. B. Terry, M. M. Theimer, K. Petersen, A. J. Demers,

M. J. Spreitzer, and C. H. Hauser. Managing Update Con-

flicts in Bayou, a Weakly Connected Replicated Storage

System. In SOSP ’95, 1995.

[56] The Cristian Science Monitor. Dropbox has hit the 175-

million-user mark, cofounder says. http://tinyurl.

com/mlz8x3c, July 2013.

[57] N. Tolia, J. Harkes, M. Kozuch, and M. Satyanarayanan.

Integrating Portable and Distributed Storage. In FAST ’04,

pages 227–238, San Francisco, CA, April 2004.

[58] N. Tolia, M. Satyanarayanan, and A. Wolbach. Improving

mobile database access over wide-area networks without

degrading consistency. In Proceedings of the 5th inter-

national conference on Mobile systems, applications and

services, pages 71–84. ACM, 2007.

[59] Torque App. Engine Performance and Diagnostic Tool.

http://torque-bhp.com/.

[60] R. van Renesse, D. Dumitriu, V. Gough, and C. Thomas.

Efficient Reconciliation and Flow Control for Anti-entropy

Protocols. In LADIS ’08, 2008.

[61] Yupu Zhang, Chris Dragga, Andrea C. Arpaci-Dusseau,

Remzi H. Arpaci-Dusseau. *-Box: Towards Reliabil-

ity and Consistency in Dropbox-like File Synchronization

Services. In Proceedings of the 5th USENIX Workshop on

Hot Topics in Storage and File Systems (HotStorage ’13),

San Jose, California, June 2013.

[62] Yupu Zhang, Chris Dragga, Andrea C. Arpaci-Dusseau,

Remzi H. Arpaci-Dusseau. ViewBox: Integrating Local

File Systems with Cloud Storage Services. In Proceedings

of the 12th Conference on File and Storage Technologies

(FAST ’14), Santa Clara, California, February 2014.

[63] Zephyr. Zephyr HxM BT Heartrate Monitor. http://

tinyurl.com/zephyr-sensor.

14

